The realization space is [1 1 0 x1 - 2 0 1 1 0 x1^3 - 4*x1^2 + 6*x1 - 4 1 x1 - 2] [1 0 1 -x1 0 1 0 x1 - 1 -x1^3 + 2*x1^2 - 2*x1 x1 x1^2 - x1] [0 0 0 0 1 1 1 x1 - 2 -x1^3 + 4*x1^2 - 4*x1 x1 x1^2 - 2*x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^12 + 12*x1^11 - 62*x1^10 + 182*x1^9 - 335*x1^8 + 398*x1^7 - 298*x1^6 + 128*x1^5 - 24*x1^4) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, x1 - 2, 2, x1^2 - 2*x1 + 2, x1^2 - 4*x1 + 2, 2*x1 - 1, x1^2 - 2*x1 + 4, x1^3 - 4*x1^2 + 4*x1 - 2, 3*x1^3 - 10*x1^2 + 12*x1 - 4, 2*x1 - 3]